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Abstract

The problems of hypersonic flow past a
stationary and an oscillating conical delta wing
at high angles of attack with detached shock waves
are studied using the thin shock layer theory.

In the stationary wing case an accurate perturba-
tion solution is obtained thus improving and
extending Messiter's and other existing theories
for flat and curved wings. For the pitching delta
wings with small amplitude, simple analytic form-
ulae are derived for the aerodynamic derivatives.
The effects of wing curvature on its stability
were studied systematically and it is found that
the pitching motion of a hypersonic delta wing is
always stable aerodynamically.

I. Introduction

With the advent of the space shuttle and
high-performance modern military aircrafts,
information on steady and unsteady aerodynamic
forces, and in particular on dynamic stability of

vehicles at high angles of attack are needed at all

Mach number range. This is most eyident in a
recent survey of Orlik-Ruckemann(l) who aiso
showed that at hypersonic speed the damping-in-
pitch derivative is one of the important
information required. Whilst Oriik-Ruckemann's
survey reveals an almost total lack of wind
tunnel capabilities for measuring dynamic
derivatives at high angles of attack, very little
theoretical work exists for predicting such
derivatives.

In the case of two-dimensional pitching
wedges with attach?d shock waves, exact inviscid
flow theory of Hui 2) predicts dynamic instability
for large wedge angles, or equivalently for flat
plate at high angles of attack. These theoretical
predictions were confirmed experimentally.

By contrast, very little theoretical work
was done on three-dimensional problems. One of
the most important, and perhaps the simplest,
unsteady three-dimensional problem is that of a
conical delta wing performing hormonic pitching
motion in a supersonic stream (Fig. 1).

Depending on the combination of the free stream
Mach number M, , the mean angle of attack o ,
the specific heat ratio vy of the gas, and the
wing geometry (such as the aspect ratio b and
the cross-sectional shape) the shock wave
developed on the lower surface may be attached to
or detached from the leading edges. Whilst the
attached shock case was studied by Liu and Hui(3),
the present paper is concerned with the case when
the shock is detached from the Teading edges but
is still attached to the wing apex.

The gas is assumed non-viscous, non-heat

conducting with constant specific heats. The
amplitude of oscillation », is assumed small so
that the unsteady flow may ge regarded as a small
perturbation of the steady flow past the wing at
its mean position. Furthermore the hypersonic thin
shock layer approximation will be made in which the
parameter characterising the thickness of the shock
layer
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is much Tess than 1.0 so that terms 0(e“) can be

neglected.

Fig.1 Wing geometry and coordinate system.

As in any perturbation theory, the accuracy
of the unsteady flow calculation depends
crucially on the availability and accuracy of the
corresponding reference steady flow solution. For
flat delta wings, t?i steady flow problem was
tackled by Messiter ) using thin shock layer
approximation. In sections 2 and 3, Messiter's
thin shock layer solution will be improved and
extended to general conical delta wing cases. This
solution will then be used in section 4 to derive
closed-form solution for the unsteady pressure and
the stability derivatives of the wing.

11. Formulation of the Problem

Consider a convex conical delta wing (Fig. 1)
performing symmetrically harmonic pitching motion
in a hypersonic stream_of gas. A cartesian
coordinate system oxyz , fixed in space, is
chosen such that the plane of leading edges of the
wing in its mean position Ties in the plane y = 0.
Let the amplitude Xo of oscillation be smali
and the pitching axis in the leading edge plane
parallel to Zz-axis and at a distance h2 from
the wing apex, 2 being the length of the wing.
When terms 0(A§) are neglected, the instantaneous
position of the wing surface is given by
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=0 (2)

where y,(x,z) is the wing equation at its mean
position, w the circular frequency and t the

time variable. The flow region of interest is

that on the Tower surface of the wing bounded by

the shock wave and the_planes 2z = t bx , where

the aspect ratio b = b/t, b being the semi-span

of the wing. At hypersonic speed the upper surface
flow has very Tittle contribution to the aerodynamic
forces and will be neglected.
steady and unsteady pressure distributions on the
lowar surface and hence the normal force coefficeint
and the stability derivatives.

Based on the assumptions stated in the
introduction, the governing equations of continuity,
momentum, and energy for the_pressure p ,density
p and the components u, v,w of the velocity gq
may be written in the form

SE + V- (5 a) =0 (3a)
G +d-vq+ Lo=0 (3b)
P
(p/eV)g + g« w(p/e") = 0 (3¢)
The boundary condition to be satisfied at
wing surface is that the normal component of
relative velocity vanishes; that is,
Bz +q-vB=0. (4)

The conditions to be satisfied at the shock
surface are the Rankine-Hugoniot jump conditions:

[o(sg +3 - v5)]=0 (52)
[(s; + - v5)% + (19)%] = 0 (5b)
[z g+ 3 - 997+ ()2 2 w/R)1 =0 (5)
[Gxvsl=0 (5d)

where the square brackets denote the change in the

enclosed quantity across the shock and S 1is the
shock wave equation given by
S(x,y,2,t) = 9 - 95(;(:2,%) =0 (6)

y.{x,z,t) is the shock height, as yet unknown. It
hds to be found as a part of the solution. The
first threee of Eq.(sg are the usual conservation
equations of mass, momentum, and specific

enthalpy across a normal shock, the last is a
vector equation (equivalent to two scalar equations)
expressing continuity of tangential velocity. The
system (5) is sufficient_to_allow calculation of
the functions u, v, w, p, o, just behind the shock
surface, in terms of the unknown shock shape Yg-

Following Messiter we consider the interest-
ing case for which the wing apex angle and the
Mach angle are of the same order of magnitude as
e » 0 ; this can be characterized by the constancy
of the similarity parameter
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Qur aim is to find the
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Furthermore, we consider a family of conical wings
such that the maximum thickness of wing ct at

X = 1 1is of the same order of magnitude as ¢ 1in
the 1imit e¢~»o0 , i.e.

S-» const as ¢ >0 . (8)
Messiter(4) pointed out that the case of shock

wave detached from the leading edges correspond to

0 <o <2 . Fromorder of magnitude analysis (e.g.
shock layer thickness is o(e), semi-span b = 0(/c))
a correct scaling of the independent variables is

x=X, y=¥a(iix) ooz

1 Tetana 7 % tan o
- _ (9)
g =Ucosa , A= okt
- )
2
where U is the free stream velocity and
K =—0t (10)
Ucosa

is the freguency parameter.

In the limit ¢ > o the flow is the Newtonian
flow. For small « and g , the following
expansions of the flow field are suggested, as a
generalization of Messiter's expansion, to
oscillating conical wings:

+ e[Vy(x,y,2) - tane u(X.y,Z)]} (11b)
W(f’ :2,t) - % wix,y,z) + Ao &3 eiktw](x,y,z)+...
U sina (]]C)
P ).(Q_SEQE -p
pf -Z ; P2 ke p(x,y,2) +
p U sin“a
+ Xy eikt Pl(x,y,z) + ... (11d)
P
— = e - e plxya2) -
p x,y,z,t)
- g€ e1kt R](x,y,z) + ... (11e)



Fo(%,2,8) = age M (hi-X) + 1 ¢ tanaly_(x,2) +
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A e

. (115)

Y](x,z)] + ...

It should be pointed out that although the
two small parameters ¢ and )y are generally
independent, the Timiting process in {11) must
be understood as 11@ A1’@ and, as shown in Ref.

5, this correctly corregponds to the definition of (m)

stability derivatives.

Substituting (9)-(11) into Egs.(3)-(6) and
equating Tike terms in < and ), , we obtain the
following systems of equations for the determination

of the perturbation flow quantities. Thus, to
linear order terms in ¢ , we have
vy tw, =0 (12a)
u, +v uy twu, = 0 (12b)
Vet v vy twy, + py =0 (12¢)
W + v wy tWwW, = 0 (12d)
(5‘3+V5—§,+W‘5‘2‘)(p'YD)= (12e)
(M4 at  y=ylxz) ,
3y a3y
v {ax W ] (13)
At y =kys(x,z) sou= -y (14a)
vVEy o - y2 -1 (14b)
T Iex sz
We -y, (14¢)
_ 2
P=2Y¥ - Yg; ! (14d)
o =al2yg - yzz) (14e)
At x=0, y =0 (14f)
where 5 (R.3)
Y (x,z
yplxsz) = 2—— (15)
Le tano

The condition (14f) arises because the shock is
assumed attached to the wing apex during the
course of oscillation.

To the linear order terms in Ays We have (6)
+ .
R]x v R].y +w R1z + 1kR1 + U]x + V]y ITTGa?
le +v U]y +w U]z + ikU] =0 (16b)
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Ppy - cot a[kE(h - x) + 2ik] = (16c)
w]x +v w]y +w W]Z + ikw] + P]z *w U] +
+ Wy V] t W, w] = 0 (16d)
3 3 3, . B
Gx*Vay t Wizt 1Ky - vRy) =0 (16e)
Q.Vb ayb
at ¥y =y 62), Vy o= Uy 5= 4 W (17)
at y =y (x,z) , Uy = tana (18a)
V1 = tan o Yoy - 2ySZ Y +[ik-v (x,ys,z)]Y.I
+ Y1X + cota(N y )[1k(h x)-11  (18b)
Wy = -{wy(x,ys,z) Yy o4 ¥, teota ¥,
« [ik(h-x)-17} (18¢)
P] = 2 cotalik{h-x)~-1] (18d)
Ry = 2a -cota[ik(h-x)-1] (18e)
at x=20, Y] =0 (18f)
where a = +§ . =§;% s N2 (y-T)M s1n2a (19)

It is to be noticed that in consistance with
the Timiting process noted earlier, the boundary
conditions in system (I1) for determining the
unsteady flow are satisfied at the steady mean
positions of the wing (yp) and the shock (yg) .
The system (I) for the steady flow and the system
(I1) for the unsteady flow will be considered
sucessively in sections3 and 4 . It should be
noted that system (I) is non-linear whereas {II)
is linear.

III. The Steady Flow Solution

In this section, we consider the solution to
system (I) in section 2 . For the specZa} case
of flat delta wings, = 0, Messiter(4) reduced
the problem to that of solving a single functional-
differential equation. For general conical wings
the wing equation may be given by

Yp(x:2) = x £(z2) , Z=2/x (20)

By extending Messiter's method, we can also reduce
the problem of solving (I) to th?t of the fo]1ow1ng
functional-differential equation 6) for z{w)



r ' (w)z'[Z(w)] ]
GIEW 2w [Fw)-wl

] fIZ(w)] Z'[Z(w)]

Z{(0) = 0

Z(1 + )

where ( )' denotes ordinary derivative of a
function.

It is convenient to make the following
transformations

=W
W= 1+Q
200 - 20

then (21) becomes

(27 (82) (82 - W)? = [2(s2) - 172 -

) {1 -(é%fg}z[l . az'(BZ)f"($%§ﬂ}

Z{0) = 0

2(1) =1
where

= S
L I

and its range for detached shock flow is
0 <g <

3 .

Once (24) is solved the steady shock wave

position yg can be found from

Y W * V(W

g7 [He-sz(W*)1°

Other flow variables can also be calculated.

where

I, = [ We-BZ(WJZT (W) gy (28a)
- %
sz(n)  [P-ez(w)]
(21a)
3.4
(21b) 12=J L2 (OTL OF) g (28)
8Z(W) [W*-gZ (W*)]
(21c)
For small 8 > 0 Eq.(24) can be solved
in the series form
2= 7, 00) + 82, (H) + 8°Z,0) + ..., (29)
and the function f" , depending on wing geometry,
(22) can be expanded in the form
~ ~ ~ 2. o~
(23) () = -[f;(2) + 8f,(2) + 8°F;3(2) + ... 172, (30)
where f., f,, ... can be found once the wing
geometry'is “given. They are assumed to be of
0(1) thus implying that c¢/b remains fixed as
g~ 0 . Substituting (29) and (30) in (24) and
equating like powers of g we get the following
systems of ordinary differential equations for
the successive determination of Zo’ Z1
(24a) iy w2 L 2 2 Tl o2
Zo ZO(O) We = Zo(l - W)+ flzo(o)w Zo (31a)
(24b) z,(0) =0 (31b)
Z (1) =1 3lc
(24c) o) (31c)
YAl t 2! ] t ¥ -
-ZZO ZO(O)WZ0 + W (21(0) z, + ZO(O)Z])
(25) 2 2 2 \
+ ZO(ZWZo - 2W°) + 220(1 - W )(Z1 - ZO(O)ZO)
212 ;
+ f]Zo(w Z](O) - ZWZO(O) Zo)
v £,20(0) We(28 - 22:(0) 22 + 22.2,)
1%0 0 o 0 071
. 2.2
+ fzzo(o) Wz (32a)
=0 32b
26 L (32b)
(1) =0 (32¢)
In

particular the normal force correction function

F  to Newtonian flow is given by

-8 (W) ¢

other unsteady

Accurate results for F as well a?S)
by using the

flow quantities have been obtained

. 2 2 above series solution for Z with no more
CN—2 sin“a - 2/yM_ expansions and truncations in the evaluation of
F= 7 the double integral (27), as was done by Messiter(4).
€ Siha It is shown in Ref. 6 that such further series
1 » gxpansionsand truncations are not valid and should
2 . 28WZ (W W e avoided. In what follows we shall solve systems
iy J 3BZ (W)[—§~—Lgl + 2f(az(W)) - —— 'ﬂ (31) and (32) for parabolic and diamond cross-
0 (1-8) (1-8) sections and present the results for the function
F together with other existing theories for
W-BZ(W)\2 comparison. We shall see that the present results
8[1-(*-7:1-1) ] improve and extend over these theories.
+ 2687 ()1, + 8 i @

225



ITI.1 Solution for wings with Parabolic Arc

Section

For wings with parabolic arc cross-section

the function f 1is given by
f=a(l - &?) (33)
where v = is the thickness parameter of the
eb
wing . The functions fl’ f2,... are given by
f = 2v , f2 =fy=0,

and the solutions of (31),(32) are given by

2W

7y = S
v](1+v2 W)

0

zﬁ[JC‘ Tan‘]

T
1

-2/, Tan™ (o, W)] , 0 < v < 0.5

Jogl

2

(35)

1 -
211 4 -1
[Z517 Mvol (W+ W )en

~
i

1+ |Vzi
-1 e 1-Viv, W
+ “"GVZHW'W ! - ‘/Ivzl on 4 ,
ke | T+ vy W

v>05

- _ 1 - 2v
where vy = 1+ 2v, vy = 3 5o -

The special case of a flat delta wing
corresponding to v = 0 has been studied in detail
in Refs. 4 and 7 and will not be discussed further.
Only we should mention that for flat wing the third
term in the series solution, I, , has also been
found. The results for the function F wusing 2
terms and 3 terms of the series solution were
found to differ only slightly. This indicates the

rapid convergence and thus the accuracy of the series

solution.

I1I11.2 Solution for wings witi Diamond Section

In the derivation of the functional-equation
(24a) it was assumed that the functions f?i) and
f'(Z) are continucus.
of the method Lo diamond scction (for which ' (0)
is undefined) s not pc:sinle. ilowever, this
apparent difficuliy can be easily removed by
considering the diamond secticn as the limiting
shape of a hyperbola whon it gets ?135e to its
asymptotic lines. It can be shown!6) that, the
function f(2) for the hyperbola is given by

f2) = w 1_‘/%2,,%_)2 JURE SRS

0

Thus ar imnediate application
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where A 1is a parameter and Qo = AQ//;\2 -1,
The functions f] and f2 are given by

v (A+]
fy = -————i—-—)———~7r- 38
B INTERITESRE e
2
£ = =3v(A1)(A°-1)Zo74 (19)

[1+ (a-1)221%/2
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Fig. 2 The functions
Arc wing.

F and G

for Parabolic

With special care in taking the limit A » o |

the solutions for Z0 and Z] are found as follows(6)
. (2-v)H
Z, Y ~ (40)
-vi sgn(W)
=72 1g(v) __2u 2
Z] Z0 o 2-v) " W
WZ
0 v sgn{W)
+ v sgn(K) en 7Tt Tey)
2vy -1 2JW]-v 1y
t == sgn(W) [Tan + Tan ' = ] (41)
1 V1 Vi
where
- V2 -1 2-v -1 v
g(v) =3 +van(2 - v)-2 -5 (Tan™' &2+ Tan™' ),
\)] \)-I \)-!
vy =® /ﬁ - v2 s Vo T v2 -2.
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Fig. 3 Th functions F and G for Diamond wing.

Once again the flat wing solution can be recovered
from (40}, (41) by setting v =0 .

Having found an approximate solution to
equations (24), we can now find the function F by
using these solutions in equation (27). The evalu-
ation of the double integrals involved is straight-
forward after making certain transformations to
remove the apparent singularities (for details see
Ref. 6). The results for the parabolic arc wings
are shown in Fig. 2 (together with other unsteady
results to be referred to in the next section)
for all values of @ and v up to 2, and
those for the diamond sections are shown in Fig. 3
for all o and v up to 1. Comparisons with
other theories are given in Fig. 4, 5 and 6 .

. Presert theory
HadS

20

o o1 02 02 04 05 ois

Fig. 4 Comparison between present and other
theories for Parabolic Arc wing.

Figs. 2 and 3 show that the thickness of the
wing tends to decrease the normal force for small
values of @ and to strongly increase it for the
Targe values of ? . Similar conclusions has been
reached by Hida(8 Figs. 4 and 5 show the good
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agreement between the present results and those

of Hida for small values of @ , while for larger

@ Hida's method gives much smaller value for F
than the present th?gsy. It is evident from

Fig. 4 that Polak's results for the parabolic
wing agree with the present resuits for large .
Hida's method is an approximate inverse method
which fails to give the correct value for F even
for flat wing as Q - 0 , while the present theory
predicts the exact value for flat wing. Moreover,
Polak has pointed out that Hida's results for

large 2 were in error and he added one more term
in Hida's series solution to obtain a better
approximation. This has led to good agreement
between Polak's results and the present theory as
shown in Fig. 4. Following Hida, Squire 10) also
studied steady flow over conical delta wings using
some approximate numerical methods. But no results
were given for F which can be compared with the
present theory. Finally, for flat delta wings(Fig.6),
the present method gives almost identical results
with Messiter's numerical solution of the functional-
differential equation. While Messiter's numerical
solution terminates at @ = 0.5 because of the
increasing error in the numerical scheme, the
present solution may be used for the whole range
of @ and for general conical wings.

&0

—r Present thecry
Y /
M

Fig. 5 Comparison between present and other
theories for Diamond wing.

[¢] Q5 10 15 20
T 1 T

)
—_——— Messlle‘r‘ {numerical)

2.01- e Hiad® @
(2) Using two terms of (29) (&)
(3} Using three terms of(29) e

Fig. 6 Comparison between present and other
theories for flat delta wings.



V.

The Unsteady Flow Solution

Now we consider the solution of system II in
section 2. An important property of system II is
that the unsteady pressure Py1 is decoupled from
the other functions (equations (16c) and (18d))
and can be easily found to be

cota(y-y,)K? (h-x) + 21k] + 2 cotalik(n-x)-11,
(42)

the other functions are not of interest in the
evaluation of the aerodynamic derivatives of the
wing and will not be discussed here.

P.l =

With the above simple closed form solution
for the unsteady pressure Pj(x,y.z), we can
derive closed form formulas. }or the aerodynamic
derivatives. The pitching moment coefficient
Cm is given by

) i, bx
Cm = —ﬁzy_:zs—— = 4 J J ()-('hi)[i’(;(s.-yb’ist)-
o

' 0

- B, dz dx/(5,0%% ) (43)
where M is the pitching moment, and p. the
value of p when the wing is stationary and its
leading edges are in the plane y =0 .
Introducing the conical coordipate Z in (43) and
Tet P](x,yb,z) = P1(x,vQXﬂz),z), we get

10
qn =-% ¢ Ao-sinza tana eikt j J Xx(x=h) -
0‘0
S](x,vaf(g), Z) dz dx (44)
Since
Cp = Aoeikt(me + 1kmé) (45)
where -mg and -mg are respectively the in-phase

and_the.out-of-phase comportents of the aerodynamic
derivatives, we get the following formulas for

-my s and -mg *
e pein 2 2 1 ]
my = 2sin2al§ - b+ K%G(a,v) (3 b - £ 02 - )] (46)
. 12
-mg = 2sin2af (5 - 3h) G(e,v) + he - %‘h + %J (47)
where
11
G(a,v) = %{ (yg - )dE , (48)

3 s o
is average shock height mcasured from wing surface

and ys is given by (26). Using (26) and (48)
we get the following form:.la for G:
an)=eJ Z%W)-Iﬁw (49;
0

and I, given by (28a).
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2sin2e

Results for the function G are shown in
Fig. 2 for parabolic wings and in Fig. 3 for
diamond wings, for all the range of @ and
various values of the thickness parameter v .

-m,

03

-03

o) 0.2 0.4 06 1.0

Fig. 7 The in-phase aerodynamic derivative for
Diamond and Parabolic Arc Delta wings.

Using the results for G{q,v) we now discuss
the aerodynamic derivatives of a pitching delta
wing at high angles of attack with detached shock
wave as follows. Although both the in-phase
derivative -mg and the out-of-phase derivatjve
-my 1in general may be infinite series in k¢ , it
turns out in the present case that -my is
independgnt of k while -my includes only terms
up to k¢ . Fig. 7 shows that -mg changes only
slightly with k for k up to 1.0, for both
parabolic and diamond sections having v = 0.5.

e
2sn2e
Q751

05

0251
h:0.5
220 4 0
° L . . . L ;
o] 01 02 03 04 05 06

Fig. 8 The out~of-phase aerodynamic derivative
for Parabolic Arc Delta wings.



Equations (46) and (47) show that -my/2sin2a
and -mz/2sin2a do not depend on the flight
parameters M_,a,y and wing aspect ratio b ,
thickness ¢ and shape f separately, but rather
depend on their combination as represented by the
function G(Q,v) showing the importance of the
parameters @ , and v in analysing the aero-
dynamic stability of a delta wing. Equation (46)
shows that the principle part of -mg/2sin2a i.e.
when k = 0 , does not depend on any parameter and
that the aerodynamic centre is at h = 2 whether
the wing is flat or curved. 3

[e1-8 2
g 2%})
h-0%
h:1C !
|
05 06

Fig. 9 The out-of-phase aerodynamic derivative
for Diamond Delta wings.

Fig. 8 shows that both the aspect-ratio
(represented by ) and thickness {represented by
v) of the parabolic wings have moderate effects
on the derivative -my and that the thickness
effect increases as tRe axis of oscillation gets
closer to wing apex. Fig. 9 shows that for the
diamond section the effect of aspect-ratio on -mj

is moderate but the thickness effect is negligible.

Fig. 10, the last figure, shows that for both the
parabdlic and diamond sections, the derivative
-mg s almost independent of both the parameters
@ and v . Similar conclusions have been
reached by Liu and Hui for pitching flat delta
wings with attached shock waves.

Finally the out-of-phase aerodynamic
derivative -my may be re-written

-Ms

—— = [h- % (G +2)1° + ]]—8 (1-6)(1+26) (50)

25in2a

But Figs. 2 and 3 show that G <1 for 0 <0 <2
and various values of v . We therefore conclude
that within the thin shock layer approximation,
the pitching motion of a slender deita wing having
conical thickness and detached shock wave in
hypersonic flight is alwaysstable dynamically. In
this context it is noted that the pitching mo%ign
of 3 flat delta win? yith attached shock wave(3
and that of a wedge 2), may become aerodynamically
unstable if the flight Mach number is low enough.

V. Conclusions

A general and a systematic study of steady
and unsteady flow past a convex slender conical
delta wing at large angles of attack with detached
shock waves is presented using thin shock layer
theory. In the steady flow part an extension and
jmprovement over Messiter's and other existing
theories is given. In particular the effect of
wing thickness and curvature on the normal force
is found. For the unsteady part, closed form
simple analytical expressions for the aerodynamic
derivatives of the wing are- found and used to
establish a criterion for the stability of flight
of delta wings. It has been shown that pitching
delta wings are always stable dynamically in
hypersonic flight. To the authors' knowledge
there exists no analytical or experimental results
to compare with for the unsteady theory.

n=0
o6 -
-mg
H 2sin2x
a4 - k=05
@ »20
!
02 hG5
cr
02
h:10
0.4
R C G2 03 04 05 06
8

Fig. 10 The in-phase aerodynamic derivative for
Parabolic and Diamond Delta wings.
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